Dental and Skeletal Maturity
The Journal of Clinical Pediatric Dentistry Volume 36, Number 3/2012 309

A
ccurate  evaluation  of  patient’s growth is important
in many fields of dentistry. The practitioner placing
implants needs to know that skeletal growth is com-
plete.
1,2
The orthodontist benefits from assessing the amount
of skeletal growth already completed in planning orthopedic
treatment.
3
Surgeons likewise assess growth before planning
surgeries  involving  growing  structures.
4
Hand-wrist  radi-
ographs  are  accepted  as  the  standard  for  skeletal  growth
evaluation, but require additional time and exposure of the
patient to additional radiation.
5
For this reason, investigators
have  searched  for  additional  ways  to  assess  growth  with
commonly taken radiographs, such as periapical, panoramic
and cephalometric radiographs.
3
Dental formation has long been employed as a method to
assess  chronological  age  and  skeletal  development.
6
Erup-
tion of the dentition was investigated but it is influenced by
systemic and local factors whereas root development is not.
7
Children  and  adolescents  have  multiple  teeth  to  evaluate
development, as most of the  teeth  are  still  forming. About
the  age  of  14,  most  of  the  teeth  cease  development  at  the
apex  except  third  molars.
8
The  third  molars  are  the  last  to
begin development and finish development, and are thus of
interest in evaluating the growth of mid to late teens.
9
This
paper  reviews  articles  using  dental  development  to  assess
skeletal growth from routine dental radiographs. 
PubMed was searched for the following keywords: skele-
tal  maturity,  skeletal  growth,  cervical  vertebra  maturity,
hand-wrist radiographs, dental maturity, tooth development,
dental staging, dental radiographic stage assessment, dental
mineralization,  third  molar  development,  and  orthopan-
togram.  In  addition,  hand  searches  from  the  references  of
relevant studies were performed. All studies were gathered
and reviewed for similarities and differences. 


&.)"*+)"' )(!*
There  are  three  main  radiographic  means  to  determine
skeletal development:  hand-wrist radiographs;  cephalomet-
ric  radiographs;  and  panoramic  or  periapical  radiographs.
Skeletal evaluation of the hand can be evaluated by observ-
ing changes in the epiphysis in different joints of the hand,
fusion  of  plates,  and  the  presence  of  the  sesamoid  bone.
Generally,  the  proximal,  middle  and  distal  phalanx  of  the
third  finger,  middle  phalanx  of  the  fifth  finger,  sesamoid
bone and the radius are analyzed. Skeletal maturity indices
(SMI)  from  1–11  have  been  described  by  Fishman  (Table
I).
10-12
These  stages  are  useful  in  determining  remaining
growth potential. These 11 stages are divided into four cate-
gories including ephiphyseal widening (SMI 1-3), ossifica-
tion of the sesamoid of the thumb (SMI 4), capping of the
third  and  fifth  finger  epiphyses  over  their  diaphyses  (SMI
5–7),  and  finally  fusion  the  third  finger  epiphyses  and
'))$+"'&'&+$+,)"+/."+!#$+$+,)"+/)'%
"' )(!"****%&+-".
John M. Morris * / Jae Hyun Park **
There have been many attempts to correlate dental development with skeletal growth. The relationship is
generally considered to be moderate at best. However, there is evidence that hand-wrist radiographic inter-
pretation of remaining growth can be augmented by taking into account the developing dentition. In addi-
tion, the practicality of evaluating routine dental radiographs and avoiding additional radiation is advan-
tageous. To this point, no system has been described to match apical development by Demirjian’s stages
and compare it to skeletal development and remaining growth. This study reviewed articles pertinent to the
relationship between developing teeth and skeletal maturity and remaining growth, and a system is proposed
to give practitioners an additional assessment for growth and development.
Keywords: dental maturity, skeletal maturity, cervical vertebrae maturity, mandibular third molar
J Clin Pediatr Dent 36(3): 309–314, 2012
*  John  M.  Morris,  DDS,  DHSc,  Private  practice,  Gilbert,  AZ,  Former
Postgradaute Orthodontic Resident, Arizona School of Dentistry & Oral
Health, A.T. Still University, Mesa, AZ.
**  Jae Hyun Park, DDS, MSD, MS, PhD, Associate Professor and Chair,
Postgraduate Orthodontic Program, Arizona School of Dentistry & Oral
Health, A.T.  still  University,  Mesa, AZ  and  International  Scholar, the
Graduate School of Dentistry, Kyung Hee University, Seoul, Korea.
Send all  correspondence  to  Dr.  Jae Hyun  Park,  Postgraduate  Orthodontic
Program, Arizona School of Dentistry & Oral Health, A.T. Still University,
5835 East Still Circle, Mesa, AZ 85206.
Tel: 480.248.8165,
Fax: 480.248.8180
Downloaded from http://meridian.allenpress.com/jcpd/article-pdf/36/3/309/2192962/jcpd_36_3_l403471880013622.pdf by Bharati Vidyapeeth Dental College & Hospital user on 25 June 2022
Dental and Skeletal Maturity
tion  of  hand-wrist  films.
23
In  contrast,  Sidlauskas  et al
24
reported  a  close  correlation  between  hand-wrist  films  and
m
andibular and maxillary growth. Growth may be difficult
to  determine  from  hand-wrist  radiographs  during  final
stages, such as determining whether an orthognathic patient
is ready for surgery.
25
Thus, additional information that can
be  easily acquired  should  be considered in  evaluating
r
emaining growth.
26
+)$(!$'%+)")"' )(!*
)-"$-)+)$%+,)+"'&
Lateral  cephalograms  show  the  cervical  vertebrae,  and
their morphologic changes in size and shape as an individual
grows.  These  changes  are  divided  into  6  major  stages 
(Figure 1 and Table I). The vertebrae increase vertically and
horizontally during the  stages, and the  concavities become
more pronounced as growth occurs.
27
The cervical vertebral
maturation  (CVM)  stage  1  is  correlated  with  initial  of
growth  (85-100%  remaining);  stage  2  with  acceleration  of
growth  (65-85%  remaining);  stage  3  with  transition  of
growth  (25-65%);  stage  4  with  deceleration  of  growth
(10–25%); stage 5 with maturation of growth (5-10%); and
stage 6 with completion of growth (0%).
13
Some have ques-
tioned  the  reproducibility  of  staging  cervical  vertebra,  and
intra-  and  inter-observer  consistency  is  questioned.
28
This
technique has been modified by Bacetti et al
2
9
to include 5
stages on the basis that it is difficult to differentiate between
cervical stage (CS) 1 and 2.
29
Reproducibility of this modi-
fied CVM technique is reportedly as high as 98.6%. With the
use of thyroid collars, CVM1 was revised to include only the
310 The Journal of Clinical Pediatric Dentistry Volume 36, Number 3/2012
diaphysis and radius (SMI 8–11). The clinician can quickly
gauge  the  remaining  growth  by  first  viewing  whether  the
a
dductor sesamoid bone of the thumb is present. If it is not,
then the epiphyses of the third and fifth finger can be viewed
for widening at select points, and the appropriate stage deter-
mined. If the sesamoid bone is present the third and fifth fin-
ger can be viewed for capping. If there is no capping, then
t
he individual is in the ossification stage. The capping stages
can  be  determined  from  the  select  points  of  the  third  and
fifth finger. If the sesamoid is present and capping is com-
pleted,  the  third  finger  and radius  can  be  viewed  for
fusion.
1
1,12
The peak growth spurt of an individual is between
stages 5–6.
13,14 
Accuracy  of  hand-wrist  predictions is  greater  right
around the peak growth spurt and when different time points
are viewed, which may require repeated radiographic expo-
sure.
15
In addition, single ossification events are not as accu-
rate as bone staging.
16
Hand-wrist  radiographs  are  not  difficult  to  assess  or
acquire.  However,  to  decrease  radiographic  exposure  to
patients  and  when  other  indications  may  be  utilized  for
rough  estimates,  hand-wrist  films  may  not  be  practical.
17
Many orthodontists can get adequate estimations of growth
from  patient  questionnaires,  observed  growth  changes  in
patients, and cervical vertebral changes on lateral cephalo-
grams.
Hand-wrist  films  and  the  developmental  patterns  from
the bones are regarded as the standard for evaluating growth.
In  original  publications,  hand-wrist  coordinated  growth  to
statural  height,  and  this  has  been  validated  by  other  stud-
ies.
1
8,19
It  is  reported,  though,  that  the  correlation  between
hand-wrist and remaining statural growth is around r = 0.7,
and predicting growth of the face  is  even lower r = 0.52.
17
Another study measured mandibular growth in three groups
of  individuals  during  acceleration,  peak  and  decelerating
phases of puberty (determined from hand-wrist radiographs)
and found that there were no statistical differences between
the  groups.
20
There  was,  however,  an acceleration of
mandibular  growth  during  the  peak  growth  spurt.  The
mandibular  growth  has  also  been  shown  to  be  different in
early or late maturers, and in molar classifications (Class I,
II  and  III).
21,22
In  addition,  ethnic  variations  can  introduce
variability  in  growth  patterns,  complicating  the  interpreta-
Figure 1. Cervical Maturation Stages. Remaining growth can be
assessed from the morphology of the vertebrae 2-4. As growth
occurs, the vertebrae bodies grow more vertically than horizontally,
and deeper concavities are observed on the lower borders.
CS1 CS2 CS3 CS4 CS5 CS6
Remaining
Pubertal
Growth
Velocity
of
Growth
SMI CS
Dental
Stage
G-H
Mandibular
Third Molar
85%-100% Slow 1-2 1 1st molars
and central
incisors
No bud, or
radiolucent
bud
65%-85% Moderate 3-4 2 1st molars
and central
incisors
Radiolucent
bud
25%-65% Peak 5-6 3 Mandibular
canines
Crown
formation
beginning
10%-25% Moderate 7-8 4 2nd
premolars
Crown
calcification
complete
5%-10% Slow 9-10 5 2nd molars Root
formation
beginning
0% Slow 11 6 All teeth
complete
except third
molars
Root
formation
1/3 to 2/3
SMI, skeletal maturity index according to Fishman;
10
CS, cervical
stage according to Hassel and Farman;
13
Demirjian dental stages
modified by Krailissari et al.
53
Table I. Relationships between skeletal and dental maturity and
their association with growth
Downloaded from http://meridian.allenpress.com/jcpd/article-pdf/36/3/309/2192962/jcpd_36_3_l403471880013622.pdf by Bharati Vidyapeeth Dental College & Hospital user on 25 June 2022
Dental and Skeletal Maturity
The Journal of Clinical Pediatric Dentistry Volume 36, Number 3/2012 311
2–4th  vertebrae,  as  the  5-6th  were  no  longer  imaged.
13
Despite  criticisms,  CVM  stages  are  consistently correlated
w
ith skeletal maturity indicators in the hand.
30-32
Gu and  McNamara
3
3
measured mandibular  growth 
and cervical maturation. They determined that peak
mandibular growth occurs between CS2 and CS3. Average
intervals  between  stages  were  16-17  months,  except  CS5-
C
S6, which was 12 months. Bacetti et al
29
a
lso investigated
CVM  and  determined  peak  mandibular  growth  and  found
peak  growth  between  cervical  vertebral  maturation  stage
(CVMS) II and CVMS III (CS3-CS4). Postpubertal cranio-
facial growth prediction from CVM is modestly effective.
3
4
The  cervical  vertebrae  as  maturational  indicators  offer
several advantages and disadvantages. There is reduced radi-
ation exposure, and cephalograms are routinely taken in an
orthodontic  office.  Proper  interpretation  of  the  stages  of
CVM  can  be  problematic,  as  illustrated  in  a  study  where
clinicians  trained  in  CVM  interpretation  only  agreed  with
themselves 62% of the time on repeated analysis.
28
The same
study showed an improvement when there are two longitu-
dinal radiographs  to  review.  However, the  clinician should
be aware of any and all indicators of growth when treatment
planning, as each individual has their own pattern of growth. 
&')%"')()"("$)"' )(!*
&+$-$'(%&+
As the teeth develop, the roots undergo similar morpho-
logical stages. These stages have been described by several
authors,  and  compared  to  other  growth  indicators,  such  as
hand-wrist  radiographs  and  cervical  vertebrae.  Some  com-
mon  morphological  categories  were  reviewed.
3
5-39
Among
these, Olze  et al
40
reported that  Demirjian et al
36
offers the
most  reproducible  assessment  of  mandibular  third  molar
development and is thus employed frequently in staging the
third  molar development. Furthermore, Dhanjal  et al
41
reported intra-observer agreement was highest using Demir-
jian’s method. The development stages described by Demir-
jian are described in Table II. 
Teeth vary in development.
42
This can be due to ethnicity,
sexual differences and on an individual basis. Some develop
early  dentally  and  late  skeletally,  or  vice  versa.
43
Dental
maturity is generally accepted in the literature to be variable
and the  relationship  to  skeletal  development is  reported  as
moderate.
15,44-46
While  some authors  have  reported high
correlations  between  skeletal  growth  and  dental  develop-
ment,
7,47-49
others  findings  have  demonstrated  low  correla-
tions.
50
There is no denying that observing the developing denti-
tion is the quickest and most accessible test for maturity that
is  available  without  additional  exposure.  For  this  reason,
several studies have suggested using routine radiographs for
a first estimate or adjunct, and if more detailed information
is needed  about  growth,  additional  sources  can be
utilized.
3,5,15,51
The mandibular canine is of interest because just before
its apex  calcifies it  is correlated to  other  events  of
puberty.
43–45,48
This  can  be  useful  for  an  indicator  of  an
impending growth spurt. The first molar and central incisor
is  finishing  development  at  the  root  apex  during  cervical
vertebral stage (CVS) 1 and 2, just before or at the beginning
of pubertal growth.
7
By the end of growth, all teeth except
third molars are likely to be finished or near finished in api-
cal development.
52
The mandibular second premolar has shown a high cor-
relation with skeletal markers of the hand, substantiated by
several investigators.
51-53
Basaran et al
7
demonstrated that the
second premolar was nearing completion of apex formation
at the CS4.
Mandibular  third  molars  are  useful  especially  in  deter-
mining the remaining growth of a patient over the age of 14,
and  offer  a  unique  perspective  because  their  development
lasts  an  extended  period  of  time.
52,54
Also,  in  determining
remaining  skeletal  growth  of  an  orthodontic  patient,  the
third molar is the only remaining tooth to undergo develop-
ment during final growth.
54
The correlation between mandibular third molar develop-
ment and skeletal development was  investigated in several
studies,  and  some  showed  a  strong  relationship  between
third molar development and skeletal maturity.
47-49,54,55
In con-
trast, some studies have reported poor relationships.
50,55
Third
molars vary  in  development  by  ethnicity and  sex,  and this
should be  considered  when evaluating  their  develop-
ment.
5,7,53,56
Relationships  between  skeletal,  cervical,  and
dental  maturity  associated  with  growth  are  summarized  in
Table I.
Molar Premolar
Canine
Stage Morphologic Characteristics
A
Calcification of single occlusal
points without fusion
B Fusion of mineralization points
C
Enamel formation completed at the
occlusal surface, dentin formation
started
D
Crown formation complete to the
CEJ, root formation commenced
E
Root length less than crown height,
bifurcation commenced calcification
F
Root length equal or greater than
crown height, roots have distinct
form
G
The walls of the root canal are paral-
lel, apical end open
H
The root apex is completely closed,
periodontal ligaments are uniform
throughout
Table II. Stages of tooth development by Demirjian et al
3
6
modi-
fied by Krailassiri et al
53
(Used with permission from The
Angle Orthodontist)
Downloaded from http://meridian.allenpress.com/jcpd/article-pdf/36/3/309/2192962/jcpd_36_3_l403471880013622.pdf by Bharati Vidyapeeth Dental College & Hospital user on 25 June 2022
Dental and Skeletal Maturity

Dental development is variable. Similar to height measure-
m
ents, the current number or category may not be as impor-
tant  as  the  change.  Thus,  evaluating  the  dentition  over  a
period of time may indicate an individual pattern. If an indi-
vidual is clearly an early dental developer, the teeth finish-
ing apical development may differ from those listed in the
c
hart. This is one of the difficulties of assessing growth – it
may be different for each patient, and skeletal growth can be
different  than  growth  of  the  dentition  or  face. All  helpful
information should be considered when evaluating growth.
25
Developing tooth  apices  have  been  correlated with
stature  and  menarche.
57
Stature  is  correlated  with  skeletal
development.
58
In  fact,  serial  height  measurements  are  a
good way to estimate growth patterns, with a reported high
correlation to height change and skeletal development.
59
In
females,  menarche  does  not  always  happen  before  peak
height velocity, though it is a fairly good indicator of accel-
erating growth.
60
It does not appear to be strongly correlated
with  dental  development.  In  males,  prepubertal  to  male
voice change can be used with other factors as an indicator
for  pubertal  growth  spurt.
61
Insulin-like  growth  factor  1
(IGF-1)  has  also  shown promise  for use  in assessing
growth.
62
Planning orthopedic treatment for orthodontics is impor-
tant. McNamara et al
6
3
reported that in patients treated with
the Frankel appliance, greater increase of mandibular length
was  observed  during  ages  closer  to  puberty.  Pancherz  and
Hagg
64,65
reported greater effects of Herbst appliance therapy
during peak growth periods. Malmgren et al
66
reported sim-
ilar findings with an activator and high pull headgear. Treat-
ing just before and during the time of peak growth allows for
more skeletal than dental change.
53
It is generally accepted that orthognathic surgery must be
planned to occur after growth has been completed according
to  a  survey  of  orthodontists.
67
Often  cleft  palate  patients
undergo surgical intervention during growth, and decreased
postsurgical  development  of  the  maxilla  has  been  docu-
mented.
68
This  decreased  growth  and  the  potential  for
changes  deviant  from  the  final  surgical  position  can  be
avoided by assessing growth and timing treatment when it is
complete.
69
It  may  be  difficult  to  determine  final  stages  of
growth from hand-wrist. For this reason, it is recommended
that other indicators of growth such as serial cephalometric
radiographs  and  vertical  height  changes  be  viewed,  espe-
cially for Class III patients with condylar hyperplasia.
25
Likewise, implant placement requires careful timing. The
ideal treatment for missing teeth may involve either substi-
tution or single tooth implant placement.
70
Timing and treat-
ment  is  best  determined  by  an  interdisciplinary  team  and
outcomes are improved through a team approach.
71,72
In the
case of a growing patient, space must be managed carefully
for the final  implant, which should  only be placed  when a
patient’s  growth  is  completed.  It  is  recommended  that
implants be placed after vertical growth is complete, which
is in the second decade of life.
73
Nevertheless, mature adults
m
ay exhibit vertical growth similar to adolescents and verti-
cal steps due to growth have been observed.
7
4
In some cases,
such as ectodermal dysplasia, implant placement in a grow-
ing patient may be appropriate.
75
Thus, growth determination
is vital to various interdisciplinary treatment planning.

Environmental  factors  may  influence  the  development  of
teeth, but generally root formation is not affected by malnu-
trition, or other processes that interfere with growth.
7
6
Care
should be taken  when  the patient  has  any endocrine disor-
ders, or conditions that may cause delayed development of
the  dentition.  In  categorizing  dental  formation,  multiple
stages of development used for dental maturity assessment
and  the  method  of  evaluating  skeletal  maturity  introduce
variability.
41
Although  Demirjian  et al
36
offers  good  intra-
observer  agreement,  developing  crowns  of  molars  may  be
angled so that differing crown stages is not very practical. In
addition,  in  classification  systems  the  more  stages  the
greater chance for error.
56
In an effort to increase accuracy,
more stages have been added, but this may make classifying
the stages more difficult.
41,77
Different  radiographic  techniques  may  introduce  vari-
ables. Accurate radiographs are important in assessing both
the skeletal and dental development structures. It is interest-
ing to note that a study using periapical radiographs of the
third molars had a higher correlation than other studies using
panoramic  radiographs.
76
Some  advantages  are  seen  with
improved  imaging  techniques  like  digital  panoramic  radi-
ographs.
78
Cone-beam computed tomography (CBCT) imag-
ing systems may further assist assessment of morphological
changes of developing teeth.
Each person has their own individual growth pattern, and
they do not necessarily follow the averages. Skeletal growth
of  the  long  bones  of  the  body  does  not  always  correlate
strongly to facial skeletal growth, which should be consid-
ered when treatment planning.

Hand-wrist examination is the gold standard for evaluating
remaining growth, yet it clearly can be augmented with addi-
tional information such as dental development. Cervical ver-
tebrae  morphology  can  also  be  evaluated  for  remaining
growth as it correlates strongly with skeletal maturity indi-
cators. The relationship between dental maturity and skele-
tal maturity  is  reported to  be strong,  yet should  not be  the
only evaluation  done  in  assessing growth  when  more
detailed information is required. There is some promise for
using  the  dentition  as  a  rough  estimator  and  an  adjunct  in
evaluating patients for skeletal growth and development. In
addition, in some situations it may obviate the need for addi-
tional exposure for hand-wrist radiographs.
312 The Journal of Clinical Pediatric Dentistry Volume 36, Number 3/2012
Downloaded from http://meridian.allenpress.com/jcpd/article-pdf/36/3/309/2192962/jcpd_36_3_l403471880013622.pdf by Bharati Vidyapeeth Dental College & Hospital user on 25 June 2022
Dental and Skeletal Maturity
The Journal of Clinical Pediatric Dentistry Volume 36, Number 3/2012 313

1. Sharma AB, Vargervik K. Using implants for the growing child. J Calif
Dent Assoc, 34: 719–724, 2006.
2. Carmichael RP, Sándor GKB. Dental implants, growth of the jaws, and
determination  of  skeletal  maturity.  Atlas  Oral  Maxillofac  Surg  Clin
North Am, 16: 1–9, 2008.
3. Sahin  Sağlam AM,  Gazilerli  U. The  relationship  between  dental  and
skeletal maturity. J Orofac Orthop, 63: 454–462, 2002.
4. McIntyre  GT.  Treatment  planning  in  Class  III  malocclusion.  Dent
Update, 31: 13–20, 2004.
5. Uysal T, Sari Z, Ramoglu SI, Basciftci FA. Relationships between den-
tal  and  skeletal  maturity  in  Turkish  subjects.  Angle  Orthod,  74:
657–664, 2004.
6. Demisch A, Wartmann P.  Calcification of the mandibular  third molar
and its relation to skeletal and chronological age in children. Child Dev,
27: 459–473, 1956.
7. Başaran G, Ozer T, Hamamci N. Cervical vertebral and dental maturity
in Turkish subjects. Am J Orthod Dentofacial Orthop, 131: 447.e13–20,
2007.
8. Prieto JL, Barbería E, Ortega R, Magaña C. Evaluation of chronologi-
cal age based on third molar development in the Spanish population. Int
J Legal Med, 119: 349–354, 2005.
9. Lewis JM, Senn DR. Dental age estimation utilizing third molar devel-
opment: Areview of principles, methods, and population studies used
in the United States. Forensic Sci Int, 201: 79–83, 2010.
10. Fishman LS.  Radiographic  evaluation of  skeletal maturation. Aclini-
cally  oriented  method  based  on  hand-wrist  films.  Angle  Orthod,  52:
88–112, 1982.
11. Fishman LS. Chronological versus skeletal age, an evaluation of cran-
iofacial growth. Angle Orthod, 49: 181–189, 1979.
12. Fishman LS. Maturational patterns and prediction during adolescence.
Angle Orthod, 57: 178–193, 1987.
13. Hassel  B,  Farman AG.  Skeletal  maturation  evaluation  using  cervical
vertebrae. Am J Orthod Dentofacial Orthop, 107: 58–66, 1995.
14. Kamal M, Goyal S. Comparative evaluation of hand wrist radiographs
with cervical vertebrae for skeletal maturation in 10-12 years old chil-
dren. J Indian Soc Pedod Prev Dent, 24: 127–135, 2006.
15. Flores-Mir C, Nebbe B, Major PW. Use of skeletal maturation based on
hand-wrist radiographic analysis as a predictor of facial growth: a sys-
tematic review. Angle Orthod, 74: 118–124, 2004.
16. Hunter CJ. The correlation of facial growth with body height and skele-
tal maturation at adolescence. Angle Orthod, 36: 44–54, 1966.
17. Verma D, Peltomäki T, Jäger A. Reliability of growth prediction with
hand-wrist radiographs. Eur J Orthod, 31: 438–442, 2009.
18. van Rijn RR, Lequin MH, Robben SG, Hop WC, van Kuijk C. Is the
Greulich and Pyle atlas still valid for Dutch Caucasian children today?
Pediatr Radiol, 31: 748–752, 2001.
19. Thodberg HH, Neuhof J, Ranke MB, Jenni OG, Martin DD. Validation
of bone age methods by their ability to predict adult height. Horm Res
Paediatr, 74: 15–22, 2010.
20. Gomes AS, Lima EM. Mandibular growth during adolescence. Angle
Orthod, 76: 786–790, 2006.
21. Silveira AM, Fishman LS, Subtelny JD, Kassebaum DK. Facial growth
during adolescence in early, average and late maturers. Angle Orthod,
62: 185–190, 1992.
22. Alexander AEZ, McNamara JA, Franchi L, Baccetti T. Semilongitudi-
nal cephalometric  study  of  craniofacial  growth  in  untreated  Class  III
malocclusion. Am J Orthod Dentofacial Orthop, 135: 700–701, 2009.
23. Mora  S,  Boechat  MI,  Pietka  E,  Huang  HK,  Gilsanz  V.  Skeletal  age
determinations in children  of European and African  descent: applica-
bility  of  the  Greulich  and  Pyle  standards.  Pediatr  Res,  50:  624–628,
2001.
24. Sidlauskas  A,  Zilinskaite  L,  Svalkauskiene  V.  Mandibular  pubertal
growth spurt prediction. Part one: Method based on the hand-wrist radi-
ographs. Stomatologija, 7: 16–20, 2005.
25. Wolford  LM,  Karras  SC,  Mehra  P.  Considerations  for  orthognathic
surgery  during  growth,  part  2:  maxillary  deformities.  Am  J  Orthod
Dentofacial Orthop, 119: 102–105, 2001.
26. Sato K, Mito T, Mitani H. An accurate method of predicting mandibu-
lar growth potential based on bone maturity. Am J Orthod Dentofacial
Orthop, 120: 286–293, 2001.
27. Mourelle R, Barbería E, Gallardo N, Lucavechi T. Correlation between
dental maturation and bone growth markers in paediatric patients. Eur
J Paediatr Dent, 9: 23–29, 2008.
28. Gabriel DB, Southard KA, Qian F, et al. Cervical vertebrae maturation
method:  poor  reproducibility. Am  J  Orthod  Dentofacial  Orthop,  136:
478–480, 2009.
29. Baccetti T, Franchi L, McNamara JA. An improved version of the cer-
vical  vertebral  maturation  (CVM)  method  for  the  assessment  of
mandibular growth. Angle Orthod, 72: 316–323, 2002.
30. Gandini P, Mancini M, Andreani F. Acomparison of hand-wrist bone
and cervical vertebral analyses in measuring skeletal maturation. Angle
Orthod, 76: 984–989, 2006.
31. San  Román  P,  Palma  JC,  Oteo  MD,  Nevado  E.  Skeletal  maturation
determined  by  cervical  vertebrae  development.  Eur  J  Orthod,  24:
303–311, 2002.
32. Lai  EH,  Liu  J,  Chang  JZ,  et  al.  Radiographic  assessment  of  skeletal
maturation stages for orthodontic patients: hand-wrist bones or cervical
vertebrae? J Formos Med Assoc, 107: 316–325, 2008.
33. Gu Y, McNamara JA. Mandibular growth changes and cervical verte-
bral  maturation.  a  cephalometric  implant  study.  Angle  Orthod,  77:
947–953, 2007.
34. Fudalej P, Bollen A. Effectiveness of the cervical vertebral maturation
method  to  predict  postpeak  circumpubertal  growth  of  craniofacial
structures. Am J Orthod Dentofacial Orthop, 137: 59–65, 2010.
35. Gleiser I, Hunt EE. The permanent mandibular first molar: its calcifi-
cation, eruption and decay. Am J Phys Anthropol, 13: 253–283, 1955.
36. Demirjian A,  Goldstein  H,  Tanner  JM. A new  system  of  dental  age
assessment. Hum Biol, 45: 211–227, 1973.
37. Gustafson G, Koch G. Age estimation up to 16 years of age based on
dental development. Odontol Revy, 25: 297–306, 1974.
38. Harris MJ, Nortjé CJ. The mesial root of the third mandibular molar. A
possible indicator of age. J Forensic Odontostomatol, 2: 39–43, 1984.
39. Kullman  L,  Johanson  G, Akesson  L.  Root  development  of  the  lower
third  molar  and  its  relation  to  chronological  age.  Swed  Dent  J,  16:
161–167, 1992.
40. Olze A, Bilang D, Schmidt S, et al. Validation of common classifica-
tion  systems  for  assessing  the  mineralization  of  third  molars.  Int  J
Legal Med, 119: 22–26, 2005.
41.  Dhanjal  KS, Bhardwaj  MK, Liversidge  HM. Reproducibility  of  radi-
ographic stage assessment of third molars. Forensic Sci Int, 159 Suppl
1: S74–77, 2006.
42. Lewis  AB.  Comparisons  between  dental  and  skeletal  ages.  Angle
Orthod, 61: 87–92, 1991.
43. Nadler GL. Earlier dental maturation: fact or fiction? Angle Orthod, 68:
535–538, 1998.
44. Chertkow  S.  Tooth  mineralization  as  an  indicator  of  the  pubertal
growth spurt. Am J Orthod, 77: 79–91, 1980.
45. Coutinho S, Buschang PH,  Miranda  F. Relationships  between
mandibular  canine  calcification  stages  and  skeletal  maturity.  Am  J
Orthod Dentofacial Orthop, 104: 262–268, 1993.
46. So  LL.  Skeletal  maturation  of  the  hand  and  wrist  and  its  correlation
with dental development. Aust Orthod J, 15: 1–9, 1997.
47. Engström C, Engström H, Sagne S. Lower third molar development in
relation to skeletal maturity and chronological age. Angle Orthod, 53:
97–106, 1983.
48. Sierra  AM.  Assessment  of  dental  and  skeletal  maturity.  A new
approach. Angle Orthod, 57: 194–208, 1987.
49. Lauterstein  AM.  A cross-sectional  study  in  dental  development  and
skeletal age. J Am Dent Assoc, 62: 161–167, 1961.
Downloaded from http://meridian.allenpress.com/jcpd/article-pdf/36/3/309/2192962/jcpd_36_3_l403471880013622.pdf by Bharati Vidyapeeth Dental College & Hospital user on 25 June 2022
Dental and Skeletal Maturity
50. Demirjian A,  Buschang  PH,  Tanguay  R,  Patterson  DK.  Interrelation-
ships among measures of somatic, skeletal, dental, and sexual maturity.
Am J Orthod, 88: 433–438, 1985.
51. Rózylo-Kalinowska  I,  Kolasa-Raczka  A,  Kalinowski  P.  Relationship
between  dental  age  according  to  Demirjian  and  cervical  vertebrae
maturity in Polish children. www.ncbi.nlm.nih.gov/pubmed/20558591
accessed August 15th, 2010.
52. Sisman Y, Uysal T, Yagmur F, Ramoglu SI. Third-molar development
in  relation  to  chronologic  age  in  Turkish  children  and  young  adults.
Angle Orthod, 77: 1040–1045, 2007.
53. Krailassiri  S,  Anuwongnukroh  N,  Dechkunakorn  S.  Relationships
between dental calcification stages and skeletal maturity indicators in
Thai individuals. Angle Orthod, 72: 155–166, 2002.
54. Cho  S,  Hwang  C.  Skeletal  maturation  evaluation  using  mandibular
third  molar  development  in  adolescents.  Korean  J  Orthod,  39:  120,
2009.
55. Steel  GH.  The  relation  between  dental  maturation  and  physiological
maturity. Dent Pract Dent Rec, 16: 23–34, 1965.
56. Bai Y, Mao J, Zhu S, Wei W. Third-molar development in relation to
chronologic age in young adults of central China. J Huazhong Univ Sci
Technol Med Sci, 28: 487–490, 2008.
57. So LL. Correlation of sexual maturation with stature and body weight
&  dental  maturation  in  southern Chinese girls.  Aust  Orthod  J,
14:18–20, 1995.
58. Moore  RN.  Principles  of  dentofacial  orthopedics.  Semin  Orthod,  3:
212–221, 1997.
59. Moore RN, Moyer BA, DuBois LM. Skeletal maturation and craniofa-
cial growth. Am J Orthod Dentofacial Orthop, 98: 33–40, 1990.
60. Hägg  U,  Taranger  J.  Maturation  indicators  and  the  pubertal  growth
spurt. Am J Orthod, 82: 299–309, 1982.
61. Kucukkeles N, Acar A, Biren S, Arun T. Comparisons between cervi-
cal vertebrae and hand-wrist maturation for the assessment of skeletal
maturity. J Clin Pediatr Dent, 24: 47–52, 1999.
62. Masoud  MI,  Masoud  I,  Kent  RL,  et  al.  Relationship  between  blood-
spot insulin-like  growth factor  1 levels  and hand-wrist  assessment of
skeletal maturity. Am J Orthod Dentofacial Orthop, 136: 59–64, 2009.
63. McNamara  JA,  Bookstein  FL,  Shaughnessy  TG.  Skeletal  and  dental
changes following functional regulator therapy on Class II patients. Am
J Orthod, 88: 91–110, 1985.
64. Hägg U, Pancherz  H. Dentofacial orthopaedics  in relation to  chrono-
logical age, growth period and skeletal development. An analysis of 72
male  patients  with  Class  II  division  1  malocclusion  treated  with  the
Herbst appliance. Eur J Orthod, 10: 169–176, 1988.
65. Pancherz  H,  Hägg  U.  Dentofacial  orthopedics  in  relation  to  somatic
maturation. An analysis of 70 consecutive cases treated with the Herbst
appliance. Am J Orthod, 88: 273–287, 1985.
66. Malmgren O, Omblus J, Hägg U, Pancherz H. Treatment with an ortho-
pedic  appliance  system  in  relation  to  treatment  intensity  and  growth
periods. A study of initial effects. Am J Orthod Dentofacial Orthop, 91:
143–151, 1987.
67. Weaver N, Glover K, Major P, Varnhagen C, Grace M. Age limitation
on  provision  of  orthopedic  therapy  and  orthognathic  surgery.  Am  J
Orthod Dentofacial Orthop, 113: 156–164, 1998.
68. Wolford LM, Cassano DS, Cottrell DA, et al. Orthognathic surgery in
the young cleft patient: preliminary study on subsequent facial growth.
J Oral Maxillofac Surg, 66: 2524–2536, 2008.
69. Bailey  LJ,  White  RP,  Proffit  WR,  Turvey  TA.  Segmental  LeFort  I
osteotomy for management of transverse maxillary deficiency. J Oral
Maxillofac Surg, 55: 728–731, 1997.
70. Kokich  VG,  Spear  FM.  Guidelines  for  managing  the  orthodontic-
restorative patient. Semin Orthod, 3: 3–20, 1997.
71. Richardson  G,  Russell  KA.  Congenitally  missing  maxillary  lateral
incisors and  orthodontic  treatment considerations  for  the single-tooth
implant. J Can Dent Assoc, 67: 25–28, 2001.
72. Lewis BRK, Gahan MJ, Hodge TM, Moore D. The orthodontic-restora-
tive  interface:  2.  Compensating  for  variations  in  tooth  number  and
shape. Dent Update, 37: 138–140, 142–144, 146–148, 2010.
73. Fudalej P, Kokich VG, Leroux B. Determining the cessation of vertical
growth of the craniofacial structures to facilitate placement of single-
tooth  implants.  Am  J  Orthod  Dentofacial  Orthop,  131(4  Suppl):
S59–67, 2007.
74. Bernard  JP,  Schatz  JP,  Christou  P,  Belser  U,  Kiliaridis  S.  Long-term
vertical  changes  of  the  anterior  maxillary  teeth  adjacent  to  single
implants in young and mature adults. A retrospective study. J Clin Peri-
odontol, 31: 1024–1028, 2004.
75. Sharma AB, Vargervik K. Using implants for the growing child. J Calif
Dent Assoc, 34: 719–724, 2006.
76. Bhat  VJ,  Kamath  GP.  Age  estimation  from  root  development  of
mandibular third molars in comparison with skeletal age of wrist joint.
Am J Forensic Med Pathol, 28: 238–241, 2007.
77. Moorrees CF, Fanning EA, Hunt EE. Age variation of formation stages
for ten permanent teeth. J Dent Res, 42: 1490–1502, 1963.
78. Introna F, Santoro V, De Donno A, Belviso M. Morphologic analysis of
third-molar maturity by digital orthopantomographic assessment. Am J
Forensic Med Pathol, 29: 55–61, 2008.
314 The Journal of Clinical Pediatric Dentistry Volume 36, Number 3/2012
Downloaded from http://meridian.allenpress.com/jcpd/article-pdf/36/3/309/2192962/jcpd_36_3_l403471880013622.pdf by Bharati Vidyapeeth Dental College & Hospital user on 25 June 2022